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Abstract: With the development of remote sensing scene image classification, convolutional neural
networks have become the most commonly used method in this field with their powerful feature
extraction ability. In order to improve the classification performance of convolutional neural networks,
many studies extract deeper features by increasing the depth and width of convolutional neural net-
works, which improves classification performance but also increases the complexity of the model. To
solve this problem, a lightweight convolutional neural network based on channel multi-group fusion
(LCNN-CMGF) is presented. For the proposed LCNN-CMGF method, a three-branch downsampling
structure was designed to extract shallow features from remote sensing images. In the deep layer of
the network, the channel multi-group fusion structure is used to extract the abstract semantic features
of remote sensing scene images. The structure solves the problem of lack of information exchange
between groups caused by group convolution through channel fusion of adjacent features. The four
most commonly used remote sensing scene datasets, UCM21, RSSCN7, AID and NWPU45, were used
to carry out a variety of experiments in this paper. The experimental results under the conditions of
four datasets and multiple training ratios show that the proposed LCNN-CMGF method has more
significant performance advantages than the compared advanced method.

Keywords: remote sensing scene image classification (RSSIC); channel fusion; convolutional neural
network (CNN); channel multi-group fusion (CMGF); lightweight; downsampling

1. Introduction

The goal of remote sensing scene image classification is to correctly classify the input
remote sensing images. Due to the wide application of remote sensing image classification
in natural disaster detection, land cover analysis, urban planning and national defense
security [1–4], the classification of remote sensing scene images has attracted extensive
attention. In order to improve the performance of remote sensing scene classification, many
methods have been proposed. Among them, convolutional neural networks have become
one of the most successful deep learning methods with their strong feature extraction
ability. Convolutional neural networks are widely used in image classification [5] and target
detection [6]. Many excellent neural networks have been designed for image classification.
For example, Li et al. [7] proposed a deep feature fusion network for remote sensing scene
classification. Zhao et al. [8] proposed a multi-topic framework combining local spectral
features, global texture features and local structure features to fuse features. Wang et al. [9]
used an attention mechanism to adaptively select the key parts of each image, and then
fused the features to generate more representative features.

In recent years, designing a convolutional neural network to achieve the optimal
trade-off between classification accuracy and running speed has become a research hotspot.
SqueezeNet [10] designed a lightweight network by squeezing and extending modules to

Remote Sens. 2022, 14, 9. https://doi.org/10.3390/rs14010009 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14010009
https://doi.org/10.3390/rs14010009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14010009
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14010009?type=check_update&version=2


Remote Sens. 2022, 14, 9 2 of 27

reduce parameter weight. In the SqueezeNet structure, three strategies are mainly used to
reduce the parameters of the model. Firstly, partial 3 × 3 convolution is replaced by 1 × 1
convolution, then the number of input channels of 3 × 3 convolution kernel is reduced, and
downsampling is carried out in the later part of the network to provide a larger features map
for the convolution layer. The traditional convolution is decomposed in MobileNetV1 [11]
to obtain the depthwise separable convolution. The depthwise separable convolution is
divided into two independent processes: a lightweight depthwise convolution for spatial
filtering and a 1 × 1 convolution for generating features, which separates spatial filtering
from the feature generation mechanism. MobileNetV2 [12] added a linear bottleneck
and inverted residuals structure on the basis of MobileNetV1, which further improves
the performance of the network. SENet [13] proposed the SE module, which consists of
extrusion and expansion. Firstly, extrusion is accomplished by global average pooling,
which transforms the input two-dimensional feature channel into a real number with a
global receptive field. Then, expansion is accomplished through the full connection layer,
and a set of weighting parameters is obtained. Finally, channel-by-channel weighting is
multiplied to complete the re-calibration of the original feature on the channel dimension.
NASNet [14] used the enhanced learning and model search structure to learn a network
unit in a small dataset, then stacked the learned units on a large dataset, which solves the
problem that the previous neural network search structure cannot be applied to a large
dataset. MobileNetV3 [15] added a SE module and used a neural structure search to search
for network configuration and parameters. ResNet [16] solved performance degradation
due to network depth using residual connectivity, and presents an efficient bottleneck
structure with satisfactory results. Xception [17] replaced the convolution operation in the
Inception module with depthwise separable convolution and achieves better performance.
GoogleNet [18] used the Inception module to make the network deeper and wider. The
Inception module consists of three convolution branches and one pooled branch, and finally
four branches were fused through channels.

Grouped convolution was first used in AlexNet [19]. Due to the limitations of hard-
ware conditions at that time, it was used in AlexNet to slice the network, which made it
run parallel with two GPUs and achieved good performance. The validity of grouping
convolution is well demonstrated in ResNeXt [20]. ResNeXt highly modularizes the net-
work structure, building a network architecture by repeating stacked modules. The module
is composed of several bottleneck structures, which improves the accuracy of the model
without increasing the number of parameters. Traditional channel grouping uses a single
grouping form (for example, the number of channels of input features is C, g is the number
of groups, and the number of channels in each group is C/g). Using a single channel
group is not conducive to feature extraction; to solve this problem, we proposed a channel
multi-group convolution structure. The structure classifies the input features into two types
of grouping, the number of channels for each set of features in the first type is C/g, and the
number of channels for each set of features in the other type is 2C/g. The channel multi-
group structure increases the diversity of features while decreasing the parameters further.
To reduce the loss of feature information during the grouping convolution process, residual
connection is added to the channel multi-group structure, which can effectively avoid
the disappearance of gradient due to network deepening. In order to solve the problem
of network performance degradation caused by lack of information interaction between
individual groups during group convolution, channel fusion of adjacent features is carried
out to increase information interaction and improve network feature representation ability.

The main contributions of this study are as follows.

(1) In the shallow layer of the network, a shallow feature extraction module is constructed.
The module is composed of three branches. Branch 1 uses two consecutive 3 × 3
convolution for downsampling and feature extraction, branch 2 utilizes max-pooling
and 3× 3 convolution for downsampling and feature extraction. Branch 3 is a shortcut
branch. The fused features of branch 1 and branch 2 are shortcut with branch 3.
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The module can fully extract the shallow feature information, so as to accurately
distinguish the target scene.

(2) In the deep layer of the network, a channel multi-group fusion module is constructed
for the extraction of deep features, which divided the input features into features
with channel number of C/g and channel number of 2C/g, increasing the diversity
of features.

(3) To solve the problem of lack of information interaction for features between groups
due to group convolution, in the channel multi-group module, the channel fusion of
adjacent features is utilized to increase the information exchange, which significantly
improves the performance of the network.

(4) A lightweight convolutional neural network is constructed based on channel multi-
group fusion (LCNN-CMGF) for remote sensing scene image classification, which
includes shallow feature extraction module and channel multi-group fusion mod-
ule. Moreover, a variety of experiments are carried out under the conditions of
four datasets of UCM21, RSSCN7, AID and NWPU45, and the experimental results
prove the proposed LCNN-CMGF method achieves the trade-off between model
classification accuracy and running speed.

The rest of this paper is as follows. In Section 2, the overall structure, shallow feature
extraction module and channel multi-group module of the proposed LCNN-CMGF method
are described in detail. Section 3 provides the experimental results and analysis. In Section 4,
several visualization methods are adopted to evaluate the proposed LCNN-GMGF method.
The conclusion of this paper is given in Section 5.

2. Methods
2.1. The Overall Structure of Proposed LCNN-CMGF Methods

As shown in Figure 1, the proposed network structure is divided into eight groups, the
first three being used to extract shallow information from remote sensing images. Groups 1
and 2 adopt a proposed shallow downsampling structure, which is introduced in Section 2.2
in detail. Group 3 uses a hybrid convolution method combining standard convolution
and depthwise separable convolution for feature extraction. Depthwise separable convo-
lution has a significant reduction in the number of parameters compared with standard
convolution. Assuming that the input feature size is H ×W × C1, the convolution kernel
size is H1 ×W1 × C1 and the output feature size is H ×W × C2, the parameter quantity of
standard convolution is:

paramsconv = H1 ×W1 × C1 × C2 (1)

The parameter quantities of depthwise separable convolution is:

paramsdsc = H1 ×W1 × C1 + C1 × C2 (2)

The ratio paramsdsc/paramsconv of depthwise separable convolution to standard con-
volution is:

paramsdsc
paramsconv

=
H1 ×W1 × C1 + C1 × C2

H1 ×W1 × C1 × C2
=

1
C2

+
1

H1 ×W2
(3)

According to Equation (3), when the convolution kernel size H1×W2 is equal to 3 × 3,
due to C2 � H1 × H2, the parameter quantity of standard convolution is approximately
9 times that of depthwise separable convolution, and when the convolution kernel size
H1×W2 is equal to 5× 5, the parameter of standard convolution is approximately 25 times
that of depthwise separable convolution. With the increase in convolution kernel size,
the parameter will be further reduced. However, depthwise separable convolution can
inevitably lead to the loss of some feature information while significantly reducing the
amount of parameters, and then make the learning ability of the network decline. Therefore,
we propose to use the hybrid convolution of standard convolution and depthwise separable
convolution for feature extraction, which not only reduces the weight parameters, but also
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improves the learning ability of the network. From group 4 to group 7, channel multi-group
fusion structure is used to further extract deep feature information. Channel multi-group
fusion structure can generate a large number of features with a few parameters to increase
the feature diversity. Assuming that the input feature size is H ×W × C1, the convolution
kernel size is H1 ×W1 × C1 and the output feature size is H ×W × C2, the parameter
quantity of standard convolution is

paramsconv = H1 ×W1 × C1 × C2 (4)

Figure 1. The proposed LCNN-CMGF network structure. Groups 1 and 2 are shallow downsampling
modules. Group 3 is hybrid convolution. Groups 4–7 are channel multi-group fusion modules. Group
8 is the global average pooling, fc and classifier.

Divide the input features into t groups along the channel dimension, then the fea-
ture size of each group is H ×W × C1

t , the corresponding convolution kernel size is
H1 ×W1 × C1

t , and the output feature size of each group is H ×W × C2
t . Connect the

obtained t group features along the channel dimension to obtain that the final output
feature size is H ×W × C2. The parameter quantity of the whole process is

paramsgconv = H1 ×W1 ×
C1

t
× C2

t
× t = H1 ×W1 × C1 × C2 ×

1
t

(5)

As shown in Equations (4) and (5), the parameter quantity of group convolution is 1/t
of the standard convolution parameter quantity, that is, under the condition of the same
parameter quantity, the number of features obtained by group convolution is t times of
the standard convolution, which increases the feature diversity and effectively improves
the classification accuracy. The details are described in Section 2.3. Group 8 consists of a
global average pooling layer (GAP), a fully connected layer (FC), and a softmax classifier
to convert the convolutionally extracted feature information into probabilities for each
scenario. Because features extracted by convolution contain spatial information, which
is destroyed if features derived by convolution are directly mapped to the feature vector
through a fully connected layer, and global average pooling does not. Assuming that
the output of the last convolution layer is O = [o1; o2; . . . ; oi; . . . oN ] ∈ RN×H×W×C, [; ; ; ]
represents cascading operations along the batch dimension, and R represents the set of real
numbers. In addition, N, H, W, C represent the number of samples per training, the height
of the feature, the width of the feature, and the number of channels, respectively. Suppose
the result of global average pooling is P = [p1; p2; . . . ; pi . . . ; pN ] ∈ RN×1×1×C, then the
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processing process of any P = [p1; p2; . . . ; pi . . . ; pN ] ∈ RN×1×1×C with the global average
pooling layer can be represented as

pi =
1

H ×W ∑H
h=1 ∑W

w=1 oi (6)

As shown in Equation (6), global average pooling more intuitively maps the features
of the last layer convolution output to each class. Additionally, the global average pooling
layer does not require weight parameters, which can avoid overfitting phenomena during
training the model. Finally, a softmax classifier is used to output probability values for
each scenario.

2.2. The Three-Branch Shallow Downsampling Structure

Max-pooling downsampling is a nonlinear downsampling method. For small con-
volutional neural networks, better nonlinearity can be obtained by using maximum pool
downsampling. On the contrary, for deep neural networks, multi-layer superimposed
convolutional downsampling can learn better nonlinearity than max-pooling according
to the training set, as shown in Figure 2. Figure 2a,b represents convolution downsam-
pling and max-pooling downsampling, respectively. The convolution downsampling in
Figure 2a first uses the 3 × 3 convolution with step size of 1 for feature extraction of the
input data, and then uses the 3 × 3 convolution with step size of 2 for downsampling.
In the max-pooling downsampling in Figure 2b, the input feature is extracted by 3 × 3
convolution with step size of 1, and then the max-pooling downsampling with step size of 2
is adopted. Combining max-pooling downsampling and convolutional downsampling, we
propose a three-branch downsampling structure as shown in Figure 3 for feature extraction,
and use the input features to compensate the downsampling features, which can not only
extract strong semantic features, but also retain shallow information.

Figure 2. The structure of traditional shallow sampling module. (a) Convolution downsampling.
(b) Max-pooling downsampling.

In groups 1 and 2 of the network, we use the structure shown in Figure 3 to extract
shallow features. The structure is divided into three branches. The first branch uses 3 × 3
convolution with step size of 2 to obtain fdown, and then uses 3 × 3 convolution with step
size of 1 to extract the shallow features of the image to obtain f1(x). That is

fdown(x) = δ(BN(F ∗ Ks=2)) (7)

f1(x) = δ(BN( fdown(x) ∗ Ks=1)) (8)



Remote Sens. 2022, 14, 9 6 of 27

In Equations (7) and (8), δ represents the activation function Rule, BN represents batch
standardization, F represents the input characteristics, Ks represents the 3× 3 convolution
kernel with step size s, and ∗ represents the convolution operation.

Figure 3. Three-branch shallow downsampling structure.

The second branch uses the max-pooling with step size of 2 to downsample the input
features to obtain fmij. The most responsive part of the max-pooling selection features
enters the next layer, which reduces the redundant information in the network and makes
the network easier to be optimized. The max-pooling downsampling can also reduce the
estimated mean shift caused by the parameter error of the convolution layer, keep more
texture information. Then, the shallow features f2(x) are extracted by 3 × 3 convolution
with step size of 1. That is

fmij = max
(s,t)∈Rij

xmst (9)

f2(x) = δ(BN( fmij(x) ∗ Ks=1)) (10)

In Equation (9), fmij represents the max-pooling output value in rectangular area
Rij related to the m-th feature, and xmst represents the element at the (s, t) position in
rectangular area Rij.

The fused feature f (x) is obtained by fusing the features from Branch 1 and Branch 2.
To reduce the loss of feature information caused by the first two branches, a residual branch
is constructed to compensate for the loss of information. The fused feature f (x) and the
third branch are fused to generate the final output feature y(x). That is

y(x) = g(x) + f (x) (11)

The g(x) in Equation (11) is a residual connection implemented by 1 × 1 convolution.

2.3. Channel Multi-Group Fusion Structure

The proposed channel multi-group fusion structure is shown in Figure 4. It divides
the input features with the number of channels C into two parts, one part is composed of
4 features with the number of channels C

4 , and the other part is composed of 2 features with
the number of channels C

2 . First, the convolution operations are performed for features with
the number of channels C

4 , the adjacent two convolution results are channel concatenated,
the number of feature channels after concatenate is C

2 . Then, the convolution operations
are performed on features with the number of channels C

2 , the adjacent two features
convolution results are channel concatenated, the number of channels of each feature after
fusion was C. The convolution operations are performed on features with the number
of channels C, and the convolution results are fused to obtain the output features. This
process can be described as follows.
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Figure 4. Channel multi-group fusion structure.

Suppose that the input feature is X = [x1, x2, . . . , xC] ∈ RW×H×C, xi
C
4
∈ RW×H× C

4

represents the i-th feature with the number of channels C
4 , and xi

C
2
∈ RW×H× C

2 repre-

sents the i-th feature with the number of channels C
2 . After channel grouping, the input

features can be represented as x1
C
4
= [x1, . . . , x C

4
], x2

C
4
= [x C

4
, . . . , x C

2
], x3

C
4
= [x C

2
, . . . , x 3C

4
],

x4
C
4
= [x 3C

4
, . . . , xC], x1

C
2
= [x1, . . . , x C

2
], x2

C
2
= [x C

2
, . . . , xC]. The convolution operation is

performed first for the features x1
C
4

, x2
C
4

, x3
C
4

, and x4
C
4

, where the number of channels is C
4 ,

and after convolution the results are y1
C
4
∈ RW×H× C

4 , y2
C
4
∈ RW×H× C

4 , y3
C
4
∈ RW×H× C

4 , and

y4
C
4
∈ RW×H× C

4 , respectively. Here, yi
C
4

can be represented as

yi
C
4
= fconv(xi

C
4

, W) = ReLU(BN(W · xi
C
4
)) i = 1, 2, 3, 4 (12)

yi
C
4

represents the convolution result of the feature xi
C
4

, and yi
C
4
= [yi

C
4
(1), yi

C
4
(2), . . . ,

yi
C
4
(m), . . . , yi

C
4
(C

4 )]. yi
C
4
(m) represents the m-th channel of the i-th feature with the number

of channels C
4 , fconv(·) represents the convolution operation, W represents the convolution

weight, ReLU represents the activation function, and BN represents batch normalization.
The use of grouping convolution can reduce the requirement of computing power,

but it will also lead to the lack of information interaction between group features, which
makes the extracted features incomplete. The information interaction is enhanced through
channel concatenate of two adjacent features (y1

C
4

, y2
C
4
), (y2

C
4

, y3
C
4
) and (y3

C
4

, y4
C
4
). The number
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of feature channels after channel concatenate is C
2 , and ti

C
2
∈ RW×H× C

2 represents the i-th

feature after channel concatenate, the channel concatenate operation of feature ς and feature
v is represented by ∑ ∑([ς, v]), where ti

C
2

is calculated as

t1
C
2
= ∑

C
4
m=1 ∑

C
4
n=1 ([y

1
C
4
(m), y2

C
4
(n)]) (13)

t2
C
2
= ∑

C
4
m=1 ∑

C
4
n=1 ([y

2
C
4
(m), y3

C
4
(n)]) (14)

t3
C
2
= ∑

C
4
m=1 ∑

C
4
n=1 ([y

3
C
4
(m), y4

C
4
(n)]) (15)

The features x1
C
2

, x2
C
2

, t1
C
2

, t2
C
2

, t3
C
2

with the number of channel C
2 are processed by

depthwise separable convolution and the results after convolution are y1
C
2
∈ RW×H× C

2 ,

y2
C
2
∈ RW×H× C

2 , y3
C
2
∈ RW×H× C

2 , y4
C
2
∈ RW×H× C

2 , y5
C
2
∈ RW×H× C

2 respectively. yi
C
2

is

calculated as
yi

C
2
= fdsc(xi

C
2

, W) = ReLU(BN(W · xi
C
2
)) i = 1, 2 (16)

yi
C
2
= fdsc(t

j
C
2

, W) = ReLU(BN(W · tj
C
2
)) i = 3, 4, 5, j = 1, 2, 3 (17)

where yi
C
2

represents the convolution result of the features xi
C
2

and ti
C
2

, and yi
C
2
= [yi

C
2
(1), yi

C
2
(2),

. . . , yi
C
2
(m), . . . , yi

C
2
(C

2 )], yi
C
2
(m) represents the m-th channel of the i-th feature with the num-

ber of channels C
2 , and fdsc(·) represents the depthwise separable convolution operation.

Then, the adjacent features (y1
C
2

, y2
C
2
), (y2

C
2

, y3
C
2
), (y3

C
2

, y4
C
2
) and (y4

C
2

, y5
C
2
) are concatenated

in the channel dimension. The number of feature channels after concatenate is C, and
si

C ∈ RW×H×C represents the i-th feature with the number of channels after concatenate C.
The calculation process of si

C is

s1
C = ∑

C
2
m=1 ∑

C
2
n=1 ([y

1
C
2
(m), y2

C
2
(n)]) (18)

s2
C = ∑

C
2
m=1 ∑

C
2
n=1 ([y

2
C
2
(m), y3

C
2
(n)]) (19)

s3
C = ∑

C
2
m=1 ∑

C
2
n=1 ([y

3
C
2
(m), y4

C
2
(n)]) (20)

s4
C = ∑

C
2
m=1 ∑

C
2
n=1 ([y

4
C
2
(m), y5

C
2
(n)]) (21)

The features s1
C, s2

C, s3
C and s4

C with the number of channels C are processed by depth-
wise separable convolution, respectively. The convolution results are y1

C, y2
C, y3

C and y4
C.

The calculation process of yi
C is

yi
C = fdsc(si

C, W) = ReLU(BN(W · si
C)) i = 1, 2, 3, 4 (22)

Next, the features y1
C, y2

C, y3
C, y4

C are fused and the fusion results and input feature X
are shortcut to obtain the final output result Y ∈ RW×H×C, where � denotes feature fusion.

Y = y1
C � y2

C � y3
C � y4

C � X (23)

3. Experiment

In this section, the proposed LCNN-CMGF method is evaluated from multiple per-
spectives using different indicators. The four most commonly used remote sensing scene
datasets, UCM21, RSSCN7, AID and NWPU45, are used to carry out a variety of experi-
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ments in this paper. The experimental results under the conditions of four datasets and
multiple training ratios show that the proposed LCNN-CMGF method has more significant
performance advantages than the compared advanced method.

3.1. Dataset Settings

To verify the performance of the proposed LCNN-CMGF method, a series of ex-
periments were performed on four datasets, i.e., UCM21 [21], RSSCN7 [22], AID [23],
NWPU45 [24]. In addition to the complex spatial structure, remote sensing scene images
also have high intra-class differences and similarities between classes, which make these
four datasets very challenging. Details of the four datasets are shown in Table 1, including
the number of images per class, the number of scene categories, the total number of images,
the spatial resolution of images, and the image size. In addition, we select a scene image
from each scene category of the four datasets for display, as shown in Figure 5. Due to
the inconsistent size of the image, in order to avoid memory overflow in the training
process, the bilinear interpolation method is used to adjust the size of the training image to
256 × 256.

Table 1. Detailed description of four datasets.

Datasets
The Number

of Images
per Class

The Number
of Scene

Categories

The Total
Number of

Images

The Spatial
Resolution of

Images (m)
Image Size

UCM21 100 21 2100 0.3 256 × 256
RSSCN7 400 7 2800 - 400 × 400

AID 200–400 30 10,000 0.5–0.8 600 × 600
NWPU45 700 45 31,500 0.2–30 256 × 256

3.2. Setting of the Experiments

When dividing the dataset, a stratified sampling method is adopted. The stratified
sampling can effectively avoid the risk of sampling deviation. In stratified sampling, a
random seed is set to ensure that the same images are chosen in each experiment. In
addition, in order to improve the reliability of the experimental results, the average value of
10 experimental results is taken as the final result. According to previous work on remote
sensing scene image classification, the datasets are divided as follows: the UCM21 [21]
dataset is divided into training:test = 8:2, that is, 1680 scene images are used for training,
and the remaining 420 scene images are used for testing; the RSSCN7 [22] dataset is divided
into training:test = 5:5, that is, 1400 scene images are used for training, and the remaining
1400 scene images are used for testing; the AID30 [23] dataset is divided into training:
test = 2:8 and training:test = 5:5, respectively. When training:test = 2:8, 2000 scene images
for training and 8000 scene images for testing; When training:test = 5:5, 5000 scene images
for training and 5000 scene images for testing; and the NWPU45 [24] dataset is divided into
training:test = 1:9 and training:test = 2:8, respectively. When training:test = 1:9, 3150 scene
images for training and 28,350 scene images for testing; When training:test = 2:8, 6300 scene
images for training and 25,200 scene images for testing. As shown in Table 2, the input
and output sizes of each group of features from group 1 to group 8 in the LCNN-CMGF
method are listed. Table 3 shows the experimental environment and parameter setting.

3.3. Experimental Result

To verify the performance of the proposed method, evaluation indexes such as overall
accuracy (OA), kappa coefficient (kappa), confusion matrix, and weighting parameters
were used for experimental comparison.
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Figure 5. Cont.
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Figure 5. Different scene images in four datasets. (a) Scene images from the UCM21 dataset. (b) Scene
images from the RSSCN7 dataset. (c) Scene images from the AID dataset. (d) Scene images from the
NWPU45 dataset.

3.3.1. Experimental Results on the UCM21 Dataset

The methods with good classification performance on the UCM21 dataset from 2019
to 2020 are selected for comparison with the proposed LCNN-CMGF method. The experi-
mental results are shown in Table 4. Under the condition that the training proportion of the
UCM21 dataset was 80%, the classification accuracy of the proposed LCNN-CMGF method
reaches 99.52%, which exceeds all the comparison methods. The proposed LCNN-CMGF
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method is 0.6% higher than the Lie group (LiG) with sigmoid kernel [25], 0.55% higher
than the Contourlet CNN method [26], and 3.19% higher than the MobileNet method [27].
Table 5 lists the kappa coefficient of the proposed LCNN-CMGF method and the compari-
son methods. The kappa coefficient of the proposed method is 99.50%, 6.13% higher than
EfficientNet [28], and 2.58% higher than Fine tune Mobilenet V2 [29], which proves the
effectiveness of our method.

Table 2. Network architecture of the LCNN-CMGF method.

Input Size Groups Output Size

256 × 256 × 3 1 128 × 128 × 64
128 × 128 × 64 2 64 × 64 × 128
64 × 64 × 128 3 32 ×3 2 × 128
32 × 32 × 128 4 16 × 16 × 128
16 × 16 × 128 5 8 × 8 × 256

8 × 8 × 256 6 8 × 8 × 256
8 × 8 × 256 7 8 × 8 × 512
8 × 8 × 512 Avgpooling 1 × 1 × 512
1 × 1 × 512 Dense 1 × 1 × 7

Table 3. Experimental environment and parameter setting.

Item Contents

Processor AMD Ryzen 7 4800 H with Radeon Graphics@2.90 GHz
Memory 16 G

Operating system Windows10
Solid state hard disk 512 G

Software PyCharm Community Edition 2020.3.2
GPU NVIDIA GeForce RTX2060 6G
Keras v2.2.5

Initial study rate 0.01
Momentum 0.9

Table 4. OA(%) of eighteen methods and the LCNN-CMGF method at the training ratio of 80% in the
UCM21 dataset.

Method OA(80%) Year

LiG with Sigmoid Kernel [25] 98.92 ± 0.35 2020
Contourlet CNN [26] 98.97 ± 0.21 2020

MobileNet [27] 96.33 ± 0.15 2020
EfficientNet [28] 94.37 ± 0.14 2020

Fine-Tune MobileNet V2 [29] 98.13 ± 0.33 2019
VGG-16-CapsNet [30] 98.81 ± 0.12 2019

ResNet + WSPM-CRC [31] 97.95 2019
Positional Context Aggregation [32] 99.21 ± 0.18 2020

LCNN-BFF Method [33] 99.29 ± 0.24 2020
DDRL-AM Method [34] 99.05 ± 0.08 2020

Skip-Connected CNN [35] 98.04 ± 0.23 2020
Gated Bidirectiona + Global Feature [36] 98.57 ± 0.48 2020

Feature Aggregation CNN [37] 98.81 ± 0.24 2019
Aggregated Deep Fisher Feature [38] 98.81 ± 0.51 2019

HABFNet [39] 99.29 ± 0.35 2020
EfficientNetB3-Attn-2 [40] 99.21 ± 0.22 2021

VGG_VD16 with SAFF [41] 97.02 ± 0.78 2020
Semi-Supervised Representation

Learning [42] 94.05 ± 1.2 2020

Proposed 99.52 ± 0.34 2021
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Table 5. Kappa (%) of six methods and the LCNN-CMGF method at the training ratio of 80% in the
UCM21 dataset.

Method OA (80%) Kappa (%)

LiG with Sigmoid Kernel [25] 98.92 ± 0.35 97.63
Contourlet CNN [26] 98.97 ± 0.21 97.81

MobileNet [27] 96.33 ± 0.15 94.91
EfficientNet [28] 94.37 ± 0.14 93.37

Fine-Tune MobileNet V2 [29] 98.13 96.92
SE-MDPMNet [29] 98.95 97.74

Proposed 99.52 ± 0.34 99.50

As shown in Figure 6, in the UCM21 dataset, except that the classification accuracy of
two scenes of ‘storagetanks’ and ‘tenniscourt’ is 95%, the classification accuracy of other
scenes is 100%. It is proved that this method has good performance on the UCM21 dataset.

Figure 6. Confusion matrix of the LCNN-CMGF method on the UCM21 dataset (80/20).

3.3.2. Experimental Results on the RSSCN7 Dataset

The comparison of experimental results of the proposed methods and some state-
of-the-art methods proposed in the last two years on RSSCN7 datasets are shown in
Table 6. The OA of our proposed method is 97.50%, which is 0.85%, 3.9% and 1.52%
higher than that of VGG-16-CapsNet [30], WSPM-CRC [31] and the Positional Context
Aggregation method [32], respectively. It is proved that our method has better feature
representation ability.

Table 6. OA (%) of seven kinds of methods and the LCNN-CMGF method under the training ratios
of 50% in the RSSCN7 dataset.

Method OA (50%) Year

Contourlet CNN [26] 95.54 ± 0.17 2020
VGG-16-CapsNet [30] 96.65 ± 0.23 2019

SPM-CRC [31] 93.86 2019
WSPM-CRC [31] 93.60 2019

Positional Context Aggregation [32] 95.98 ± 0.56 2020
ADFF [38] 95.21 ± 0.50 2019

LCNN-BFF [33] 94.64 ± 0.12 2020
SE-MDPMNet [29] 92.46 ± 0.66 2019

Variable-Weighted Multi-Fusion [43] 89.1 2019
Proposed 97.50 ± 0.21 2021
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The confusion matrix of the proposed LCNN-CMGF method on the RSSCN7 dataset
is shown in Figure 7. The proposed method has good classification accuracy on this dataset.
The classification accuracy of all scenarios can reach more than 95%, and the classification
accuracy of three scenarios, ‘Forest’, ‘RiverLake’, and ‘Resident’, can reach 99%. The
classification accuracy of ‘Field’ scenes is the lowest 95%, and some of them are incorrectly
classified into ‘Grass’ scenes, which is due to the strong class similarity between ‘Grass’
and ‘Field’ scenes.

Figure 7. Confusion matrix of the LCNN-CMGF method on the RSSCN7 dataset (50/50).

3.3.3. Experimental Results on the AID Dataset

Some excellent CNN-based methods on the AID dataset from 2018 to 2020 are se-
lected for comparison with the proposed method. The experimental results are shown in
Table 7. Under the condition that the training proportion of the AID dataset was 20%, the
classification accuracy of the proposed LCNN-CMGF method is 93.63%, which is 1.57%
higher than that of LCNN-BFF [33], 2.07% higher than that of DDRL-AM Method [34],
2.53% higher than that of Skip-Connected CNN [35], and 1.43% higher than that of GB-
Net + Global Feature [36]. Under the condition that the training proportion of the AID
dataset was 50%, the OA of the proposed method is reaching 97.54%, which is 2.09%
higher than that of Feature Aggregation CNN [37], 2.28% higher than that of Aggregated
Deep Fisher Feature [38], 0.79% higher than that of HABFNet [39], 2.15% higher than
that of EfficientNetB3-Attn-2 [40], and 1.56% higher than that of VGG_VD16 with SAFF
Method [41]. The experimental results show that the proposed method is very effective.
For remote sensing scene images with rich image variation, high similarity between classes
and strong intra-class differences, the proposed method can capture more representative
features. As shown in Table 8, the Kappa coefficient of this method is 97.45% when the train-
ing proportion is 50%, which is 1.95% higher than that of Semi-Supervised Representation
Learning [42], 1.33% higher than that of Variable-Weighted Multi-Fusion [43], 3.49% higher
than that of TSDFF [44], and 3.19% higher than that of Discriminative+AlexNet [45]. The
Kappa coefficient results demonstrate that the predicted and actual results of the proposed
method are more consistent.
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Table 7. Kappa (%) of fourteen methods and the LCNN-CMGF method at the training ratio of 50% in
the AID dataset.

Method OA (20/80)(%) OA (50/50)(%) Year

MobileNet [27] 88.53 ± 0.17 90.91 ± 0.18 2020
EfficientNet [28] 86.56 ± 0.17 88.35 ± 0.16 2020

Feature Aggregation CNN [37] - 95.45 ± 0.11 2019
TSDFF [44] - 94.65 2018

Discriminative + AlexNet [45] 85.62 ± 0.10 94.47 ± 0.12 2018
InceptionV3 [46] 93.27 ± 0.17 95.07 ± 0.22 2020

Bidirectional Adaptive Feature
Fusion [47] - 93.56 2019

MG-CAP(Bilinear) [48] 92.11 ± 0.15 95.14 ± 0.12 2020
LCNN-BFF [33] 92.06 ± 0.36 94.53 ± 0.24 2020

DDRL-AM Method [34] 91.56 ± 0.49 94.08 ± 0.35 2020
GBNet [36] 90.16 ± 0.24 93.72 ± 0.34 2020

GBNet + Global Feature [36] 92.20 ± 0.23 95.48 ± 0.12 2020
Aggregated Deep Fisher Feature [38] 92.78 ± 0.57 95.26 ± 0.84 2019

HABFNet [39] 93.01 ± 0.43 96.75 ± 0.52 2020
EfficientNetB3-Attn-2 [40] 92.48 ± 0.76 95.39 ± 0.43 2021

VGG_VD16 with SAFF Method [41] 92.05 ± 0.34 95.98 ± 0.70 2020
ResNet50 [46] 92.39 ± 0.15 94.69 ± 0.19 2020
VGG19 [46] 87.73 ± 0.25 91.71 ± 0.24 2020

Skip-Connected CNN [35] 91.10 ± 0.15 93.30 ± 0.13 2020
Proposed 93.63 ± 0.10 97.54 ± 0.25 2021

Table 8. Kappa (%) of seven methods and the LCNN-CMGF method at the training ratios of 50% in
the AID dataset.

Method OA (50%) Kappa (%)

Two-Stage Deep Feature Fusion [44] 94.65 93.41
MobileNet [27] 90.91 ± 0.18 89.53

EfficientNet [28] 88.35 ± 0.16 87.21
Semi-Supervised Representation Learning [42] 95.63 95.50

TSDFF [44] 94.65 93.96
Discriminative + AlexNet [45] 94.47 ± 0.12 94.26

Variable-Weighted Multi-Fusion [43] 96.23 ± 0.35 96.12
Two-Stream Deep Fusion Framework [49] 94.58 93.34

InceptionV3 [46] 95.07 ± 0.22 94.83
ResNet50 [46] 94.69 ± 0.19 93.47
VGG19 [46] 91.71 ± 0.24 90.06
Proposed 97.54 ± 0.25 97.45

The confusion matrix of the LCNN-CMGF method on the 50/50 AID dataset is shown
in Figure 8. The classification accuracy of all scenes has reached more than 90%, among
which the classification accuracy of ‘Meadow’, ‘Viaduct’ and ‘Sparse Residential’ has
reached 100%. In the training proportion of 50%, the classification accuracy of ‘School’
scenes is the lowest, which is 93%. Some school scenes are incorrectly classified into
three scenes: ‘Industrial’, ‘Church’ and ‘Commercial’. The reason is that there are similar
buildings among the four scenes of ‘School’, ‘Industrial’, ‘Church’ and ‘Commercial’. The
high inter-class similarity leads to the low classification accuracy of the ‘School’ scene. For
all that, the proposed method still achieved better classification performance compared
with the previously proposed advanced method.
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Figure 8. Confusion matrix of the LCNN-CMGF method on the AID (50/50) dataset.

3.3.4. Experimental Results on the NWPU45 Dataset

Similar to the AID dataset, some excellent neural networks on the NWPU45 dataset from
2018 to 2020 are selected for experimental comparison. The experimental results are shown in
Table 9. When training:test = 1:9, the OA of the proposed method reached 92.53%, which is 6%
higher than that of the LCNN-BFF method [33], 8.15% higher than that of VGG_VD16 with
the SAFF method [41], 3.31% higher than that of Discriminative + VGG16 [45], 11.19% higher
than that of VGG19 [46] and 0.97% higher than that of MSDFF [50], respectively. When
training:test = 2:8, the OA of the proposed method is 6.6% and 2.45% higher than that of
Contourlet CNN [26] and the LCNN-BFF method [33], respectively. Meanwhile, the OA
of the proposed method is 8.2% higher than that of Skip-Connected CNN [35] and 3.31%
higher than that of Discriminative + VGG16 [45]. This indicates that the proposed method
performs better on both training ratios on NWPU45 datasets. Under the condition that the
training proportion is 20% in the NWPU45 dataset, the kappa coefficient contrast results
for the proposed LCNN-CMGF method and the contrast method are shown in Table 10.
The Kappa value of this method is the highest among all comparison methods, reaching
94.04%. It is 1.12%, 5.69% and 10.72% higher than that of LiG with sigmoid kernel [25],
Contourlet CNN [26] and MobileNet [27], respectively.

On the NWPU45 dataset, when training:test = 2:8, the confusion matrix obtained
by the proposed LCNN-GWHA method is shown in Figure 9. Because the NWPU45
dataset contains rich content variations and a complex spatial structure, there are no fully
recognized scenes when classifying the dataset. However, the classification accuracy of the
proposed method for 43 scenes reached more than 90%. The lowest classification accuracy
was for ‘palace’ and ‘church’, which were 87% and 88%, respectively. The main reason is
that the two scenarios, ‘palace’ and ‘church’, have similar architectural styles and are easy
to confuse when extracting features, resulting in classification errors.
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Table 9. OA (%) of seventeen methods and the LCNN-CMGF method at the training ratios of 20%
and 10% in the NWPU45 dataset.

Network Model OA (10/90)(%) OA (20/80)(%) Year

Contourlet CNN [26] 85.93 ± 0.51 89.57 ± 0.45 2020
MG-CAP with Biliner [48] 89.42 ± 0.19 91.72 ± 0.16 2020

EfficientNet [28] 78.57 ± 0.15 81.83 ± 0.15 2020
LiG with RBF Kernel [51] 90.23 ± 0.13 93.25 ± 0.12 2020

LiG with Sigmoid Kernel [25] 90.19 ± 0.11 93.21 ± 0.12 2020
VGG19 [46] 81.34 ± 0.32 83.57 ± 0.37 2020

ResNet50 [46] 86.23 ± 0.41 88.93 ± 0.12 2020
InceptionV3 [46] 85.46 ± 0.33 87.75 ± 0.43 2020
MobileNet [27] 80.32 ± 0.16 83.26 ± 0.17 2020

Discriminative + VGG16 [45] 89.22 ± 0.50 91.89 ± 0.22 2018
Discriminative + AlexNet [45] 85.56 ± 0.20 87.24 ± 0.12 2018

Skip-Connected CNN [35] 84.33 ± 0.19 87.30 ± 0.23 2020
LCNN-BFF Method [33] 86.53 ± 0.15 91.73 ± 0.17 2020
VGG-16-CapsNet [30] 85.05 ± 0.13 89.18 ± 0.14 2019

VGG_VD16 with SAFF Method [41] 84.38 ± 0.19 87.86 ± 0.14 2020
MSDFF [50] 91.56 93.55 2020

R.D [52] - 91.03 2019
Proposed 92.53 ± 0.56 94.18 ± 0.35 2021

Table 10. Kappa (%) of ten methods and the LCNN-CMGF method at the training ratio of 20% in the
NWPU45 dataset.

Network Model OA (20%) Kappa (%)

Contourlet CNN [26] 89.57 ± 0.45 88.35
EfficientNet [28] 81.83 ± 0.15 79.53

LiG with RBF Kernel [51] 93.25 ± 0.12 93.02
LiG with Sigmoid Kernel [25] 93.21 92.92

VGG19 [46] 83.57 82.17
ResNet50 [46] 88.93 87.61

InceptionV3 [46] 87.75 86.46
MobileNet [27] 83.26 81.72

Fine-Tune MobileNet V2 [29] 93.00 92.93
LCNN-BFF Method [33] 91.73 91.54

Proposed 94.18 ± 0.35 94.04

3.4. Comparison of the Computational Complexity of Models

In addition, to further demonstrate the advantages of the proposed methods in terms
of speed, MobileNetV2 [12], CaffeNet [23], VGG-VD-16 [23], GoogleNet [23], Contourlet
CNN [26], SE-MDPMNet [29], Inception V3 [46], ResNet50 [46], LiG with RBF kernel [51],
and LGRIN [53] were used for comparison with the proposed LCNN-CMGF method. Some
experiments were carried out on the AID dataset. The size of Giga Multiply-Accumulation
operations per second (GMACs) was used as the evaluation index in the experiments.
The GMACs measures the computational complexity of a model. The comparison of
experimental results of these methods on the AID dataset with training:test = 5:5 is shown
in Table 11. As shown in Table 11, the OA of the proposed LCNN-CMGF method is 97.54%,
the parameter quantity is 0.8 M, and the GMACs value is 0.0160 G. Compared with other
lightweight models LiG with RBF kernel [51] and MobleNetV2 [12], the proposed method
achieves higher classification accuracy with less than half of the parameters of the two
methods. Although the accuracy is slightly lower than that of LGRIN [53], the number of
parameters is 3.83 M less than that of LGRIN [53], and the GMACs value is 0.4773 G less
than that of LGRIN [53]. The proposed LCNN-CMGF method achieves a good trade-off
between model complexity and classification accuracy.
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Figure 9. Confusion matrix of the LCNN-CMGF method on the NWPU45 (20/80) dataset.

Table 11. Evaluation values of ten methods and the LCNN-CMGF method at the training ratio of
50% in the AID dataset.

Method OA (%) Parameters GMACs

Contourlet CNN [26] 89.57 12.6 M 1.0583 G
SE-MDPMNet [29] 97.14 5.17 M 0.9843 G

LiG with RBF Kernel [51] 96.19 2.07 M 0.2351 G
InceptionV3 [46] 95.07 45.37 M 2.4356 G

ResNet50 [46] 94.69 25.61 M 1.8555 G
MobileNetV2 [12] 95.96 3.5 M 0.3451 G
VGG-VD-16 [23] 89.64 138.36 M 7.7500 G

CaffeNet [23] 89.53 60.97 M 3.6532 G
GoogleNet [23] 86.39 7 M 0.7500 G

LGRIN [53] 97.65 4.63 M 0.4933 G
Proposed 97.54 0.8 M 0.0160 G

3.5. Comparison Results of Shallow Feature Extraction Modules

Convolutional neural network first extracts the shallow feature of images. With the
deepening of the network, the extracted features are more abstract and contain more se-
mantic content, as shown in Figure 10. Figure 10a is the original remote sensing scene
image. After the feature extraction of convolutional neural network, the shallow feature
map is shown in Figure 10b. With the deepening of the network, more complex features
are extracted, as shown in Figure 10c. Compared with the features in Figure 10b, the
features in Figure 10c are more complex and have more semantic information. For the
classification of remote sensing images, both shallow and deep features are very useful.
The traditional methods for extracting shallow features of images are shown in Figure 2a,b.
The two methods are not sufficient to extract the shallow features of the image, and some
information will be lost during the feature extraction process. Therefore, we propose a three-
branch downsampling structure to extract the shallow features of images. The three-branch
downsampling structure has great performance advantages compared with the traditional
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convolution method. In order to prove the effectiveness of the proposed three-branch
downsampling structure, the feature extraction capabilities of the two traditional downsam-
pling structures (as shown in Figure 2a,b) and the proposed three-branch downsampling
structure (as shown in Figure 3) are experimentally compared. The comparison process
is as follows. In the first experiment, the downsampling structure in Figure 2a is used to
replace the three-branch downsampling structure in group 1 and group 2 ofthe proposed
method, represented by method 1. In the second experiment, the downsampling structure
in Figure 2b is used to replace the three-branch downsampling structure in group 1 and
group 2 of the proposed method, represented by method 2. In the third experiment, the
three-branch downsampling structure is preserved, which was represented by method 3.
The specific experimental parameter settings are shown in Section 2.2. Some comparative
experiments were conducted on the AID dataset with training:test = 5:5. For a fair compari-
son, the three experiments were carried out under the same experimental conditions. The
experimental results are listed in Table 12. As shown in Table 12, the three methods have
no obvious difference in parameter quantity and model complexity. However, compared
with method 3, the other two methods have lower classification accuracy. Specifically, the
classification accuracy of method 3 is 1.08% and 1.57% higher than that of method 1 and
method 2, respectively.

Figure 10. Visualization results of feature maps. (a) The original remote sensing scene image.
(b) Visualization results of shallow features. (c) Visualization results of deep features.

Table 12. Comparison results of feature extraction ability of three methods.

Method OA(%) Parameters GMACs

method 1 96.46 ± 0.36 0.79 M 0.0156 G
method 2 95.97 ± 0.16 0.77 M 0.0152 G
method 3 97.54 ± 0.25 0.8 M 0.0160 G

3.6. Ablation Experiment

In this section, the effectiveness of the number of channels of each group in a channel
multi-group fusion structure on network performance is analyzed. Firstly, the group with
2/C channels of the designed multi-grouping fusion structure is removed, and then the
structure diagram with channel number C/4 is obtained, which is shown in Figure 11a.
Secondly, the group with C/4 channels of the designed multi-grouping fusion structure is
removed, and then the structure diagram with channel number C/2 is obtained, which is
shown in Figure 11b. Finally, the complete multi-group fusion structure is used for compar-
ison. Some comparative experiments were conducted on the AID dataset with a training
proportion of 50%. OA, parameters and GMACs were adopted as evaluation indexes in
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the experiment. In the three experiments, to make a fair comparison, the experimental
equipment and experimental parameter settings are all the same. The experimental results
are listed in Table 13. As shown in Table 13, when the grouping structure with the number
of channels C/4 is adopted, as shown in Figure 11a, the OA is 96.09%, the parameter
quantity is 0.57 M, and the GMACs value is 0.0153 G. When the grouping structure with
the number of channels C/2 is adopted, as shown in Figure 11b, the OA is 95.20%, the
parameter quantity is 0.53 M, and the GMACs value is 0.0149 G. The two structures are
similar in parameter quantity and model complexity, but the OA of the grouping structure
with channel number C/4 is higher than that of the grouping structure with channel num-
ber C/2 because it increases the diversity of features. However, there is still a large gap in
classification performance between the two methods and the proposed multi-group fusion
structure, which further proves the effectiveness of the proposed method.

Figure 11. Cont.
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Figure 11. The proposed structure with different groups. (a) Structure diagram with channel number
C/4. (b) Structure diagram with channel number C/2.

Table 13. Comparison results of the proposed structure with different groupings on
network performance.

Group OA(%) Parameters GMACs

4/C 96.09 ± 0.61 0.57 M 0.0153 G
2/C 95.20 ± 0.15 0.53 M 0.0149 G

2/C + 4/C 97.54 ± 0.25 0.8 M 0.0160 G

4. Discussions

In order to display the feature extraction ability of the proposed method more intu-
itively, a series of visualization methods are adopted to evaluate the proposed method.
Firstly, the feature extraction ability of the proposed method is presented by using the visu-
alization method of Class Activation Map (CAM). The CAM method displays important
areas of the image predicted by the model by generating a rough attention map from the
last layer of the convolutional neural network. Some images in the UCM21 dataset are
chosen for visualization experiments, and the visualization results are shown in Figure 12.
As shown in Figure 12, the proposed LCNN-CMGF method can highlight semantic objects
corresponding to real categories. This shows that the proposed LCNN-CMGF method has
a strong ability to locate and recognize objects. In addition, the proposed LCNN-CMGF
method can better cover semantic objects and has a wide highlight range.
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Figure 12. Cam visualization results of the LCNN-CMGF method on the UCM21 dataset.

Next, t-distributed stochastic neighbor embedding visualization (T-SNE) method is
used to visualize the proposed LCNN-CMGF method and further evaluate the performance
of the proposed LCNN-CMGF method. T-SNE is a nonlinear dimensionality reduction
algorithm, which usually maps high dimensions to two-dimensional or three-dimensional
space for visualization, which can well evaluate the classification effect of the model. The
RSSCN7 and UCM21 datasets are used for visualization experiments, and the experimental
results are shown in Figure 13.

As shown in Figure 13, there is no confusion between single semantic clusters on the
UCM21 dataset and the RSSCN7 dataset, which means that the proposed LCNN-CMGF
method has better global feature representation, increases the separability and relative
distance between single semantic clusters, and can more accurately extract the features of
remote sensing scene images and improve the classification accuracy.

In addition, a randomized prediction experiment is performed on the UCM21 dataset
using the LCNN-CMGF method. The results are shown in Figure 14. From Figure 14, we
can see that the LCNN-CMGF method has more than 99% confidence in remote sensing
image prediction, and some of the predictions even reach 100%. This further proves the
validity of the proposed method for remote sensing scene image classification.
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Figure 13. T-SNE visual analysis results. (a) The T-SNE visualization results of the proposed method
on UCM21 datasets. (b) The T-SNE visualization results of the proposed method on RSSCN7 datasets.
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Figure 14. Random classification prediction results.



Remote Sens. 2022, 14, 9 25 of 27

5. Conclusions

In this paper, a lightweight convolutional neural network based on channel multi-
group fusion (LCNN-CMGF) was proposed to classify remote sensing scene images. In the
proposed LCNN-CMGF method, the three-branch downsampling structure was designed to
extract shallow features from remote sensing images. Channel multi-group fusion structure
was presented to efficiently extract deep and abstract features of remote sensing images.
The channel multi-group fusion structure utilizes channel fusion of adjacent features to
reduce the lack of information exchange between groups caused by group convolution.
The experimental results show that the proposed LCNN-CMGF method can achieve higher
classification accuracy with fewer parameters and computational complexity than some
state-of-the-art methods. Especially on UCM21 datasets, the OA value of this method is as
high as 99.52%, which surpasses most of the existing advanced methods. Future work is to
find a more effective convolution method to reduce the loss of feature information as much
as possible while preserving the lightweight of the network.
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